Connections between Wiener index and matchings

نویسندگان

  • Weigen Yan
  • Yeong-Nan Yeh
چکیده

Let T be an acyclic molecule with n vertices, and let S(T ) be the acyclic molecule obtained from T by replacing each edge of T by a path of length two. In this work, we show that the Wiener index of T can be explained as the number of matchings with n− 2 edges in S(T ). Furthermore, some related results are also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordering Trees with Perfect Matchings by Their Wiener Indices

The Wiener index of a connected graph is the sum of all pairwise distances of vertices of the graph. In this paper, we consider the Wiener indices of trees with perfect matchings, characterizing the eight trees with smallest Wiener indices among all trees of order 2 ( 11) m m with perfect matchings.

متن کامل

Peripheral Wiener Index of a Graph

The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperti...

متن کامل

Topological Relationship Between Wiener Index in contrast to the Energy and Electric Moments in TUVC6I2p, ill with Same Circumference and Various Lengths

Topological indices are one of the oldest and most widely used descriptors in Quantitative StructureProperties Relationvhips (QSPR). Amongst the topological indices used a,s descriptors in QSPIC., the Wienerindex is by far the most popular index. as it has been shown that the Wiener index has a strong correlationwith the chemical propenies of the compound.In this study, the relationship between...

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

Relation Between Wiener, Szeged and Detour Indices

In theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. Among them Wiener, Szeged and detour indices play significant roles in anticipating chemical phenomena. In the present paper, we study these topological indices with respect to their difference number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006